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Abstract

Globally, large carnivore livestock predations are major causes of conflicts with humans, thus iden-
tifying hotspots of carnivore attacks is fundamental to reduce the impact of these, and hence pro-
mote coexistence with humans. Species distribution models combining predictor variables with
locations of predation events instead of species occurrences (also known as predation risk models)
are increasingly used to predict livestock depredation by carnivores, but they are often developed
pooling attacks on different livestock species.

We identified the main factors related to predation risk on livestock using an extensive dataset of
4604 locations of verified wolf predation events on livestock collected in northern and central Italy
during 2008–2015 and assessed the importance of pooling versus splitting predation events by prey
species.

We found the best predictors of predation events varied by prey species. Specifically, predation
risk increased with altitude especially for cattle, with grasslands especially for cattle and sheep and
with distance to human settlements, especially for goats and livestock but only slightly for cattle
and sheep. However, predation risk decreased as human population density, human settlements and
artificial night-time light brightness increased, especially for cattle. Finally, livestock density was
positively related to predation risk when herd exceeds 500 heads for km2. Moreover, prey-specific
risk models are better tools to predict wolf predation risk on domestic ungulates.

We believe that our approach can be applied worldwide on different predator-prey systems and
landscapes to promote human-carnivore coexistence. Actually, while pooling predation events
could be primarily used by managers and personnel of wildlife agencies/offices in developing gen-
eral policies, splitting predation events by prey species could be used at farm-level to better iden-
tify livestock owners at risk in high-priority areas and which prevention tools and deterrents (e.g.
electric fences, guarding dogs, predator-proof enclosures) should be applied, as the most effective
measures differ by species.

Introduction
One of themost important threats to the long-term conservation of large
carnivore populations worldwide is illegal killing caused by conflicts
with human activities (Ripple et al., 2014).
Attacks on livestock can cause extensive conflicts between humans

and carnivores, even if the mitigation of conflicts is often addressed
with compensation schemes to offset losses and preventing tools to re-
duce attacks of large carnivores (Bautista et al., 2017, 2019). The re-
cent recovery of large carnivores in human dominated landscapes has
increased the controversy and concern for livestock producers, espe-
cially where wild predator populations and farmlands overlap (Zingaro
and Boitani, 2017). Therefore, the evaluation of conflicts with human
activities is fundamental to design sound conservation strategies for
both large carnivore populations and pastoral communities (Marino et
al., 2016; Inskip and Zimmermann, 2009). However, the knowledge
about the underlying mechanisms and factors associated with carnivore
attacks on livestock are often limited.
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In recent years, an increasing number of studies adopted species
distribution models (SDMs; Guisan et al., 2013) to predict predation
risk on livestock (also known as predation risk models, PRMs; Miller,
2015). While SDMs are widely used to predict species-environmental
relationships (e.g. the extent of species invasions or species’ range
shifts due to climate and land use change; Brewer et al., 2016), PRMs
are aimed to predict spatial distribution of predation risk and thus spa-
tially identify livestock exposed to carnivores attacks. Specifically,
PRMs use locations of carnivores’ attacks, instead of species occur-
rences, in combination with environmental predictors to predict preda-
tion risk on livestock. Several carnivore species hunt in areas character-
ized by a combination of land cover, vegetation structure and human ac-
tivities where they can easily access and kill prey (Gorini et al., 2012),
often regardless prey abundance (also known as “landscape of fear”;
Laundré et al., 2010). Identifying factors related to the sites where car-
nivores successfully kill livestock and quantifying their effects could re-
veal the spatial features associated to predation risk (Hebblewhite et al.,
2005), thus offering much needed insights to understand and forecast
spatial predation risk (Trainor and Schmitz, 2014). Actually, preda-
tion on livestock compromises the economic security of local farmers
and increases negative attitude towards predators, leading to human-
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carnivore conflicts, which counteract the efforts made to promote large
carnivore conservation (Pimenta et al., 2018). Thus, it is fundamen-
tal to accurately prevent attacks on livestock in areas where human-
carnivore conflicts is likely to arise and focus interventions where the
depredation risk is higher (Zingaro and Boitani, 2017).
However, depredation events on livestock species (e.g. cattle Bos

taurus, goats Capra hircus and sheep Ovis aries) are often grouped in
PRMs, without considering potential differences related to attacks on
different species (Karanth et al., 2012; Abade et al., 2014; Behdarvand
et al., 2014; Soh et al., 2014; Miller, 2015; Miller et al., 2015; Gese et
al., 2016). The factors that best determine prey accessibility can vary
over different domestic ungulates (Bradley and Pletscher, 2005; Kaarti-
nen et al., 2009). Specifically, cattle, sheep and goats are among the
main livestock species killed by large carnivores (Treves and Karanth,
2003; Nowak et al., 2005; Rigg et al., 2011) but there has been little
research on the different factors that may affect predation risk on dif-
ferent domestic preys (Cascelli de Azevedo and Murray, 2007; Odden
et al., 2008; Valeix et al., 2012; Pimenta et al., 2018).
We investigated wolf predation risk on livestock in Italy where, af-

ter a human-driven decline in the last two centuries, this large carnivore
experienced a recovery following conservation efforts, recolonizing the
entire Apennine chain and the Alps, thanks to the protection by laws,
its adaptability to habitat changes and the marked recovery of wild prey
populations (Boitani, 2000; boitani, 2003; Valiere et al., 2003; Fabbri et
al., 2007; Galaverni et al., 2016). This positive trend also raised public
negative attitudes due to the perceived high impact on human activities
and caused concern of livestock breeders because of its predatory be-
haviour (Fritts et al., 2003; Marucco and McIntire, 2010; Dondina et
al., 2015).
Our aims were (i) predict the spatial patterns of wolf (Canis lupus)

predation risk on livestock in the Northern-Central Apennines, Italy,
in order to identify hotspots of livestock depredation where adoption
of prevention tools should be prioritized and (ii) to identify the main
environmental and anthropogenic factors related to wolf predation on
livestock assessing the importance of pooling versus splitting predation
events by prey species.

Materials and methods
Study area
Our study area is located in the southern part of the European wolf
range, covering a large portion (48882 km2) of the Northern-Central
Apennines, Italy (7°49′-13°91′ E; 45°-42°39′ N; Fig. 1). Elevation
ranges from 0 to 2476 m a.s.l. and there is a climatic gradient, from
temperate to continental to alpine, resulting in high habitat diversity.
Forests are mainly composed of broadleaf or mixed woods and, to
a lesser extent, by coniferous forests. As a result of human popula-
tion abandonment experienced during the last 40–50 years in the hilly
and mountainous parts of study areas, shrub-lands and grasslands are
mainly used only for livestock grazing. Thus, our study area results in
a patchy landscape pattern of forests and open-areas across large zones
where livestock, mostly cattle, sheep and goats, are commonly free-
ranging (with births on pastures) and unguarded in pastures from April
to October. Some wild ungulates used as main prey by the wolf are
also present (i.e. wild boar, Sus scrofa, roe deer, Capreolus capreo-
lus, fallow deer, Dama dama and red deer, Cervus elaphus; Milanesi
et al., 2015). While livestock breeders seemed to be technically and
culturally prepared to interact with the wolf in areas of its historical oc-
currence, this is no longer true in many areas of its recent recoloniza-
tion (Ciucci and Boitani, 1998). In Italy, the system of compensations
paid annually to owners for damages has proved to be not very effec-
tive, producing dissatisfaction among livestock breeders (Dondina et
al., 2015; Marino et al., 2016). In our study area, public administra-
tions (Regions, Provinces and Parks) have distributed electrified fences
and provided livestock guarding dogs over the past 20 years to promote
coexistence by the adoption of preventive measures. However, this is
often perceived as difficult and economically disadvantageous, involv-
ing additional workload often not applicable or functional (Ciucci and
Boitani, 2005).

Table 1 – Predictor variables considered in the analysis. Variables with a variance inflation
factor (VIF) >3 were removed from further analysis (*) due to multi-collinearity.

Predictor variable VIF
Altitude (m a.s.l.) 2.739
Slope (°) 2.240
Landscape roughness (ratio of isoipses’ average length in a cell
over the cell side)*

>3.000

Croplands (%) * >3.000
Coniferous forests (%) 1.108
Deciduous forests (%) 2.322
Mixed forests (%) 1.182
Grasslands (%) 1.454
Shrub-lands (%) 1.302
Water courses (%) 1.072
Distance to forests (m) 1.641
Shannon’ habitat diversity index (H ′ =−∑(π ∗ ln(π)) 1.666
Human settlements (%) 1.939
Distance to human settlements (m) 1.895
Distance to roads (m) 1.172
Artificial night-time light brightness (nw/cm2/sr) 2.419
Human population density (number/km2) 1.673
Livestock density (number/km2) 1.082

Data collection

We collected a total of 4604 verified depredation events on livestock
(1273 on cattle, 2906 on sheep and 425 on goats) caused by wolves
across our study area in the period 2008–2015 from Regional and
Provincial wildlife and veterinary Agencies. The data collected con-
tained information on the location (X and Y coordinate in the WGS
84 / UTM zone 32N system), date and prey species depredated by
wolves. Data were verified by the staff of the public veterinary ser-
vice and State Forestry Corps or Provincial Police, often in collabo-
ration with Regional and Provincial wildlife staff, 24–48 hours after
the predation event reported by owners. While we are aware that local
management practices (e.g. surveillance and protection) may dramati-
cally affect livestock vulnerability (Pimenta et al., 2017), we could not
consider such information in our analysis because, similar to Pimenta
et al. (2018), of the lack of standardized data over our study.

Predictor variables

Considering previous published papers on livestock depredation risk
modelling (Miller, 2015; Gese et al., 2016), we selected 18 predic-
tor variables available for the entire study area (Tab. 1). We chose
three topographic variables (altitude, slope and landscape roughness),
derived from a digital elevation model of Italy with a spatial resolu-
tion of 20m (http://www.sinanet.isprambiente.it), nine land cover vari-
ables (percentage of coniferous, deciduous and mixed forests, crop-
lands, grasslands, shrub-lands, water courses as well as distance to
forests and habitat diversity) derived from CORINE Land Cover vec-
tor data (ISPRA, 2019). Moreover, we considered anthropogenic fea-
tures such as the percentage and distance to human settlements (i.e.
urban areas and villages also derived from the CORINE Land Cover
2012), distance to roads (OpenStreetMap; http://www.openstreetmap.
org), human population density (GEOSTAT 2011 1×1 km grid dataset
– Eurostat – European Commission; ec.europa.eu/eurostat/web/gisco/
geodata/reference-data/population-distribution-demography; Tab. 1)
and artificial night-time light brightness (NOAA, NPP VIIRS – NASA
2012 with a spatial resolution of 350m; https://ngdc.noaa.gov/eog/viirs/
download_dnb_composites.html). Finally, we calculated livestock den-
sity (pooling cattle, sheep and goats; FAO’s Gridded Livestock of
the World v.2.0 with a spatial resolution of 1 km; http://livestock.geo-
wiki.org/home-2/).

All predictor variables were resampled at a 1×1 km grid cell size
and we calculated the Variance Inflation Factor (VIF; Zuur et al., 2010)
to check for multicollinearity among predictors. Thus, we removed

2



Modelling species-specific livestock predation risk

Figure 1 – A: study area (in white) in Italy (in dark grey). Thin and thick black lines indicate provincial and regional borders, respectively. B: locations of wolf predations on livestock (black
dots); C: locations of wolf predations on cattle (in red); D: locations of wolf predations on goats (in green); E: locations of wolf predations on sheep (in blue).

landscape roughness and croplands because VIF >3 (highly related to
other predictors; Zuur et al., 2010; Tab. 1).

Predation risk models

To fit PRMs avoiding biased estimation due to single model uncer-
tainty (Thuiller et al., 2009), we calculated the weighted ensemble
prediction (wEP, weighted by the true skills statistic, TSS; see be-
low) averaging 12 different SDMs namely (1) artificial neural networks
(ANN; Ripley, 2007), (2) boosted regression trees (BRT; (Friedman,
2001)), (3) classification tree analyses (CTA; Breiman et al., 1984),
(4) flexible discriminant analyses (FDA; Hastie et al., 1994), (5) gen-
eralized additive models (GAM; Hastie and Tibshirani, 1990), (6) gen-
eralized linear models (GLM; McCullagh and Nelder, 1989), (7) fac-
torial decomposition of Mahalanobis distances (MADIFA; Calenge et
al., 2008), (8) multivariate adaptive regression splines (MARS; Fried-
man, 1991), (9) maximum entropy algorithm (MAXENT; Phillips et
al., 2006), (10) maximum-likelihood model (MAXLIKE; Royle et al.,
2012), (11) MAXENT model using the glmnet package (Friedman
et al., 2010) for regularized generalized linear models (MAXNET;
Phillips et al., 2017) and (12) random forests (RF; Breiman, 2001).
We developed SDMs through the packages adehabitat (Calenge,
2006), biomod (Thuiller et al., 2016), maxlike (Chandler and Royle,
2013) and maxnet (Phillips et al., 2017) in R (R Core Team, 2019;
https://www.R-project.org/). To develop the above mentioned PRMs,
we randomly sampled a total of 10000 pseudo-absences distributed
proportionally to the accumulated percentage of grasslands and shrub-
lands (Fig. S1). Here, we assume that livestock is available to wolves in
our sampled pseudo-absences as these areas mainly correspond to pas-
tures where livestock graze.
We found evidence of spatial autocorrelation among models’ resid-

uals through Moran’s I correlogram and thus, similarly to Pasinelli et
al. (2016), we included x- and y-coordinates of species locations and
their interaction in SDMs (then, the model residuals where no longer
spatially autocorrelated).
By using a random subsample of 90% of the locations to calibrate the

models and the remnant 10% to validate them (Thuiller et al., 2009),
we carried out 10-fold cross-validations to evaluate the predictive ac-
curacy of SDMs. Since there is actually no consensus about the most
accurate way to evaluate model prediction, we considered three widely
used indices to evaluate model performance: (i) the area under the re-
ceiver operating characteristic curve (AUC), (ii) the true skills statistic
(TSS) and (iii) the Boyce index (BI). Thus, we converted the resulting
wEP continuous maps into binary ones, considering threshold values
estimated by maximizing TSS (Allouche et al., 2006; Thuiller et al.,

2016). Values higher and lower than these thresholds represent sites
where wolf kills are likely to occur or not, respectively.

Comparison of predation risk models and factors related
to predation risk on livestock
We develop two sets of PRMs, (i) pooling locations related to predation
events on livestock (P-PRMs) and (ii) splitting predation events by prey
species (S-PRMs; resulting in cattle-, sheep- and goats-PRM). To avoid
that P-PRMs could be affected by the different sample size of locations
of predations on sheep (2906), cattle (1273) and goats (425), we ran-
domly selected a total of 425 locations (equal to the number of goats
depredations) for both sheep and cattle (we repeated this procedure 10
times to verify consistentcy of the results). Moreover, for both sheep
and cattle we used the unselected locations as indepedent datasets for
model evaluations.

Thus, we carried out pairwise Spearman correlation tests between
the resulting wEPs of both P-PRMs and three S-PRMs and finally esti-
mated response curves plotting predation risk on P- and each S-PRMs
vs. each predictor variables.

Results
Our random selection of 425 locations of depredations events on both
sheep and cattle provided consisten results in the 10 runs carried out.

The 10-fold cross-validations showed high predictive accuracy of
both P-PRMs and S-PRMs, ranging between 0.786 and 0.998 for AUC,
0.751 and 0.998 for TSS and from 0.988 to 0.998 for BI and the S-
PRMs showed higher values than those of P-PRMs (Tab. 2). Similarly,
validating the models of both sheep and cattle with the, independent,
randomly non-selected data showed high predictive accuracy of the rel-
ative S-PRMs (Tab. S1).

Considering the resulting threshold values (maximizing TSS) of 56,
58, 55 and 61 for livestock, cattle, goats and sheep, respectively, we es-
timated depredation risk in 26.29% (12852 km2), 12.84% (6276 km2),
21.45% (10484 km2) and 21.14% (10335 km2) of the study area, re-
spectively.

Comparing the resulting risk maps of P-PRMs and S-PRMs, we
found the lowest correlation between cattle and goats (ρ=0.37) and the
highest between livestock and sheep (ρ=0.76; Fig. 2).

Response curves derived by P-PRMs and S-PRMs highlighted a di-
rect relation between predation risk and grasslands, except for goats that
showed a steep decrease after 75% of grassland coverage (Fig. 3). A
similar pattern was found also in relation to coniferous forest coverage,
except for cattle that showed a decrease after 25% of coniferous forest
coverage (Fig. 3). While predation risk increased with altitude, slope,
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Table 2 – Ten-fold cross-validations of the 12 species distribution models (artificial neural network, ANN; boosted regression trees, BRT; classification tree analyses, CTA; flexible discriminant
analyses, FDA; generalized additive models, GAM; generalized linear models, GLM; factorial decomposition of Mahalanobis distances, MADIFA; multivariate adaptive regression splines,
MARS; maximum entropy algorithm, MAXENT; maximum-likelihood model, MAXLIKE; MAXENT model using the glmnet package for regularized generalized linear models, MAXNET; random
forests, RF) and their weighted ensemble prediction (wEP) used to estimate predation risk on livestock pooling and splitting by species predation risk models (P-PRM and S-PRM,
respectively). Area Under the Curve (AUC) ranges between 0 and 1 (worse than a random model and best discriminating model, respectively). True Skill Statistic (TSS) and Boyce’s Index
(BI) ranges between -1 and 1 (higher values indicate a good predictive accuracy, while 0 indicates random prediction). Average values are shown.

P-PRM S-PRMcattle S-PRMsheep S-PRMgoats

Model AUC TSS BI AUC TSS BI AUC TSS BI AUC TSS BI

ANN 0.827 0.753 0.959 0.871 0.816 0.988 0.881 0.824 0.998 0.881 0.823 0.988
BRT 0.837 0.756 0.976 0.933 0.825 0.988 0.893 0.859 0.988 0.884 0.856 0.989
CTA 0.841 0.781 0.988 0.881 0.814 0.998 0.899 0.858 0.998 0.966 0.894 0.998
FDA 0.786 0.751 0.988 0.871 0.807 0.998 0.881 0.842 0.998 0.878 0.824 0.998
GAM 0.891 0.777 0.975 0.924 0.825 0.985 0.934 0.853 0.981 0.943 0.859 0.987
GLM 0.889 0.757 0.988 0.987 0.863 0.995 0.981 0.844 0.998 0.983 0.839 0.988
MADIFA 0.862 0.782 0.958 0.923 0.842 0.982 0.914 0.821 0.987 0.987 0.814 0.985
MARS 0.849 0.752 0.988 0.892 0.864 0.988 0.894 0.846 0.998 0.894 0.844 0.988
MAXENT 0.815 0.768 0.988 0.918 0.867 0.998 0.928 0.857 0.998 0.924 0.848 0.988
MAXLIKE 0.857 0.784 0.975 0.921 0.858 0.987 0.904 0.848 0.982 0.921 0.835 0.983
MAXNET 0.891 0.762 0.985 0.918 0.865 0.996 0.927 0.851 0.998 0.908 0.847 0.989
RF 0.958 0.898 0.983 0.988 0.981 0.998 0.998 0.989 0.988 0.998 0.998 0.998
wEP 0.878 0.789 0.988 0.936 0.876 0.998 0.931 0.862 0.997 0.927 0.897 0.998

habitat diversity and distance to human settlements, we found differ-
ences in the response curves of P-PRMs and S-PRMs, mainly due to a
higher increase in the P-PRMs (Fig. 3). On the other side, both P-PRMs
and S-PRMs showed a peak around 10% of shrublands, deciduous and
mixed forests while for livestock density we found, after an initial peak,
a decrease up to 300 heads km2, but a strong increase at higher den-
sities (Fig. 3). Finally, predation risk generally decreased as distance
to forests and roads, increased. The same hold true for percentage of
water courses and human settlements, human population density and
artificial night-time light brightness.

Discussion
In this study, we found differences in the relation between environmen-
tal predictors and predation risk resulting from pooling and splitting
predation events by prey species. Specifically, we developed and com-
pared predation risk maps derived by pooling locations of predation

Figure 2 – Maps of pairwise Spearman’ correlation coe�cients between predation risk
probability of wolves on livestock, cattle, sheep and goats (derived by weighted ensemble
predictions) in each grid cell of our study area are shown below the diagonal. Purple-
white-orange scale indicates positive, null or negative correlation, respectively (average
values are shown on the bottom left corner of each map). Predation risk probability maps
for livestock, cattle, sheep and goats are shown in diagonal (red-greenscale indicates high-
low probability of predation risk) and their relative values are plotted above the diagonal.

events on livestock to those estimated for each prey species separately
in the Northern-Central Apennines, Italy and found differences among
the resulting predation risk maps. Moreover, S-PRMs had a higher
predictive accuracy than P-PRMs, showing that the former could be
more accurate tools in predicting prey-specific predation risk. Thus,
we strongly encourage researchers and managers to develop and apply
prey-specific PRMs, when data on individual prey species are avail-
able, to predict more accurately hotspots of livestock predation risk.
Finally, while sampling pseudo-absences proportionally to the accu-
mulated percentage of grasslands and shrub-lands let us accurately es-
timate predation risk, we suggest collecting also data relative to avail-
ability of pastures in which livestock graze, in order to inform PRMs on
true-absence data and thus potentially provide more accurate estimate
of predation risk.

E�ect of splitting vs pooling livestock species in PRMs

We found different patterns of predation risk for livestock, cattle, goats
and sheep in our study area. Actually, the correlation between pre-
dation risk maps derived by P-PRM and S-PRMs for cattle and goats
was relatively low (ρ=0.59 and ρ=0.57, respectively; Fig. 2) and even
lower considering the three resulting maps of S-PRMs (ρ=0.47 be-
tween sheep and goats, ρ=0.42 between cattle and sheep and ρ=0.37
between cattle and goats; Fig. 2) with different surfaces in which wolf
depredations are likely to occur in our study area. Thus, our results
suggested that the predictor variables considered in this study quanti-
tatively differ in relating predation risk on different prey species.

We found that predation risk increased directly with altitude, espe-
cially for cattle (up to the maximum elevation in our study area, 2,476
m a.s.l.) while it reached a plateau for sheep, goats and livestock ap-
proximately at 300, 400 and 1,750 m a.s.l., respectively (Fig. 3), mainly
because alpine pasture at medium-high altitudes makes livestock more
vulnerable to wolves attacks (Ciucci and Boitani, 2005); calves born on
pastures at medium-high altitudes are often taken by wolves (Dondina
et al., 2015). Actually, studies on the daily activities of cattle showed
differences at different altitudes, i.e. high grazing rates at low altitudes
while long resting periods at higher altitudes (Aldezabal et al., 1999).
However, Alexander et al. (2006) found that in the Rocky Mountains
wolves occurred at low altitudes probably because of the good condi-
tions in those areas, such as occurrence of high biomass, good foraging
sites and shelter for preys.

Considering slope, predation risk reached an asymptote approxi-
mately after 20 degrees for both cattle and goats while for sheep it
firstly reached a peak around nine and then increased up to 50 de-
grees (the maximum slope in our study area; Fig. 3). In general, cat-
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Figure 3 – Response curves and relative 95% confidence intervals (in gray) of predation risk probability of wolves on livestock (in black), cattle (in red), sheep (in blue)and goats (in
green)derived by weighted ensemble predictions in relation to predictor variables.

tle avoid slopes higher than 20% (~11-12 degrees; Gillen et al., 1984;
Bailey, 2005) while goats are more agile than sheep and able to graze
even in hardly accessible areas (Bartolomé et al., 1998), although their
management and protection in mountain pastures is thus more diffi-
cult (Ciucci and Boitani, 2005; Iliopoulos et al., 2009). While, sheep
mainly graze on pastures at medium-high slopes in our study area, their
small body size and large rumen volume could represent a disadvantage
when a predator attacks (Hanley, 1982). The response curves of preda-
tion risk on livestock increased directly with slope but without reaching
a plateau, with an increase in predation risk above 30 degrees. Thus,
in contrast to other studies (Abade et al., 2014; Miller, 2015; Carvalho
et al., 2015), we found that slope is directly related to predation risk,
probably because, in our study area, wolf attacks on domestic ungulates
occur on pastures on steep slopes and thus are difficult to prevent, both
by shepherds and guardian dogs (Ciucci and Boitani, 2005; Falcucci,
2007).
Predation risk was negatively related to the occurrence of water

courses, consistent with previous studies (Treves et al., 2004, 2011),
because water courses prevents livestock from moving too far and thus
being exposed to attacks, although not in all cases (Ripple and Beschta,
2003; Ciucci and Boitani, 2005; Abade et al., 2014).
Moreover, we found that predation riskwas positively related to habi-

tat diversity, mainly because wolves use different kinds of habitat for
different activities (e.g. hunting, breeding; Houle et al., 2010) and be-
cause environmental heterogeneity attracts wolves as it promotes the
abundance of the main wild prey of the wolf. However, while the re-
sponse curve of livestock was consistent with the predation risk ex-
pected for goats or sheep, it has a slightly different shape consider-
ing cattle, decreasing after a peak habitat diversity index value of 2.5.
Sheep and goats can forage in very different environmental conditions
characterized by heterogeneous and complex landscapes, such as those
occurring in our study area, where they could also try to escape from
wolves (Leiber et al., 2009). On the other side, cattle do not respond
selecting habitat different than pastures (e.g. forest cover) when wolves
attack (Muhly et al., 2010).
In contrast to other studies, we found that shrublands (Davie et al.,

2014; Miller et al., 2015; Pimenta et al., 2018), coniferous (Treves et
al., 2004, 2011; Kaartinen et al., 2009), deciduous (Treves et al., 2004;
Dondina et al., 2015) and mixed forests (Treves et al., 2004; Dondina et
al., 2015) had a slight, even negative, relationship with predation risk.
However, this is not surprising as wolves’ attacks on domestic ungulates
mainly occurred in pastures, where tree coverage is often very low by

definition (Abade et al., 2014; Imbert et al., 2016), mainly at the borders
of pastures. Actually, our response curves showed a peak of predation
risk on livestock around 10% of coniferous, deciduous andmixed forest
coverage, those of cattle showed a marked decrease over 25% of conif-
erous forest cover, while goats and sheep showed a decrement over 30%
of mixed forest cover. On the other side, grasslands showed a positive
correlation with predation risk on cattle and sheep, because they often
occur at high densities on pastures, with few or no refuges during the
grazing season (Ciucci and Boitani, 2005). Conversely, predation risk
on goats showed a negative relation to grasslands increase (after 75%)
probably because goats avoid areas with too high percentage of grass-
lands as their diet contains larger amounts of browse and lignin than
that of cattle and sheep (Bartolomé et al., 1998; Osoro et al., 2017).

Considering anthropogenic variables, we found a negative relation
between predation risk and human population density as well as hu-
man settlements, confirming that human disturbance is a limiting factor
for wolves (Jędrzejewski et al., 2005). However, the negative effect of
both these anthropogenic variables is stronger for predation risk on cat-
tle, as grazing close to human activities could represent safe areas for
this domestic prey species (Muhly et al., 2010; Amirkhiz et al., 2018).
Moreover, these patterns could also be related to wolf habitat use and
selection, as high road and human densities can decrease habitat suit-
ability for this large carnivore (Wydeven et al., 2002; Oakleaf et al.,
2006; Amirkhiz et al., 2018; Mancinelli et al., 2019).

Distance to human settlements was positively related to predation
risk, with a strong increase for goats and livestock but only a slight
increase for cattle and sheep, as attacks often occur far from human
settlements (Kaartinen et al., 2005; Davie et al., 2014; Miller, 2015).
However, Behdarvand et al. (2014) found that in Iran, where the nat-
ural environment is strongly modified and wild preys are scarce, the
proximity of human settlements is an important factor in wolf attack to
livestock.

In contrast to Treves et al. (2011) and Behdarvand et al. (2014), we
found that distance to roads and forests were negatively related to pre-
dation risk, in agreement with previous studies (Kissling et al., 2009;
Miller et al., 2015) showing the highest risk of large carnivores attack
on domestic ungulates around 5 km–8 km and 3 km from forests and
roads, respectively. Thus, additional interesting aspects of our results
are the threshold distances at which the large carnivore can access live-
stock despite of human activities (Miller et al., 2015). Actually, the lo-
cation of the home-range, habitat use, activity patterns and movements
of wolves are highly integrated to make the best functional compromise
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between finding the main food resources available while avoiding hu-
man disturbance (Kaartinen et al., 2005; Mancinelli et al., 2018, 2019).
Accordingly, we also found that artificial night-time light bright-

ness seems to be a disturbance factor for wolves, as it was negatively
correlated with predation risk, especially for cattle. Thus, our results
highlighted the importance of artificial night-time light in disrupting a
predator’s attack. This is probably related to the risk of conflicts with
humans in urbanized areas or close to roads generally equipped with
night lighting and thus artificial lights can also be exploited as a non-
lethal preventing method to reduce livestock depredation (Darrow and
Shivik, 2009). However, wolves can quickly become accustomed and
habituated to passive disruptive stimuli (Shivik, 2004) but moving the
object or light around intermittently and randomly may slow the habit-
uation process (Shivik and Martin, 2001).
Finally, livestock density was positively related to predation risk

when the herd exceeds 500 heads per km2, as shown in the response
curve that decreased until 300 heads and then increased over 500 heads.
Indeed, large free-grazing livestock herds could attract wolves due to
high availability of vulnerable individuals and relatively low human
control (Cozza et al., 1996; Bradley and Pletscher, 2005; Kaartinen et
al., 2009). The increase is more pronounced for sheep and livestock
than goats and cattle, in agreement with Cozza et al. (1996) and Mech
(2000) which showed that large sheep herds are highly attractive for
wolves. However, our results are in contrast to those of Zarco-González
et al. (2013), which found that in Mexico, livestock predation by puma
(Puma concolor) is negatively related to livestock density.

Prey selectivity is also dependent on their anti-predatory behaviour.
For instance, goats tend to spread inside the forest in case of wolf at-
tacks on pastures, which in turn increases the encounter rate of wolves
with isolated individuals (Iliopoulos et al., 2009) while cattle giving
birth on pastures could experience high predation risk by wolves on
new-born calves (Dondina et al., 2015). Actually, wolves prey almost
exclusively on calves born on pastures, whereas adults are rarely at-
tacked (Milanesi et al., 2015) because new born are brought into the
herd (as an anti-predatory strategy) only a few days or weeks after the
birth (Lidfors and Jensen, 1988; Finger et al., 2014).
Other predictors not considered in our study may also have affected

variation in wolf predation risk on livestock species. For example, pre-
vious studies showed that wolf predation on livestock may relate to hus-
bandry practices (which can be difficult to quantify and so include in
PRMs; Pimenta.ea.2018), wolf densities and availability of alternative
wild preys (Mech, 2000; Treves et al., 2004, 2011; Kaartinen et al.,
2009; Imbert et al., 2016; Pimenta et al., 2017). Pimenta et al. (2018)
suggested that local variations in wolf densities and activity patterns
may have affected predation intensity, as well as variables describing
wild prey abundance (unavailable in both their and our studies). How-
ever, the same authors (Pimenta et al., 2018) found that PRMs devel-
oped considering predation intensity (i.e. considering the number of
individuals killed per prey species as response variable) had low ex-
planatory power and that heavy predation on livestock occurred also
in areas where wild ungulates occurred (Llaneza et al., 1996, 2000;
Casimiro, 2017), suggesting that livestock density (considered in our
study but not in Pimenta et al., 2018 rather than wild prey densities
may be the main driver of livestock predation patterns.

Predation risk models and management implications

Carnivore attacks on livestock are the main cause of conflicts with hu-
man activities and thus it is fundamental to develop accurate PRMs to
identify areas where carnivores could successfully kill livestock. Re-
cent studies showed the usefulness of PRMs in supporting effective
conservation and management actions at multiple stages of decision-
making (i.e. from farm management to region-level policies; Miller,
2015). Thus, validation of PRMs is particularly relevant as they poten-
tially represent a basis for management actions (Grimm and Railsback,
2005; Marucco and McIntire, 2010) and, given the high values of the
validation statistics, we have confidence in our PRMs as decision sup-
port tools for implementing efforts to prevent livestock depredations.

Currently, while most of the studies applying PRMs pool attacks on
different livestock species (when available), our results highlighted that
drivers of predation risk are prey species-specific and thus different
livestock species may require different management prescriptions to re-
duce such risk (Pimenta et al., 2018). Accordingly, we provided more
accurate estimates of prey-specific predation risk models, S-PRMs than
pooling together attacks to all livestock species, P-PRMs, avoiding bi-
ased estimation of predation risk.

Hence, we suggest developing P- and S-PRM in an hierarchical de-
cision process in which the former could provide a general overview
of predation risk patterns when data on individual prey attacks are
scarce (e.g. during initial colonization of a carnivore in a given area),
averaging predation risk among different prey-species, while the lat-
ter could provide much insight to estimate prey-specific predation risk
when data on individual prey attacks are widely available. Otherwise,
P-PRMs could be primarily used bymanagers and personnel of wildlife
agencies/offices in developing general policies, while S-PRMs could
be used at farm-level to identify livestock owners in high-priority ar-
eas (with high predation risk) where prevention tools and deterrents
(e.g. electric fences, guarding dogs, predator-proof enclosures; Miller,
2015) should be applied.

However, even if the availability and the correct use of prevention
tools (i.e., electric fences, guarding dogs) is a prominent way to limit
attacks on livestock, they cannot be efficiently used in all environments
(Milanesi et al., 2015) and thus, a time- and cost-efficient method for
reducing livestock losses is to avoid grazing domestic animals in areas
where they are highly vulnerable to carnivore attacks (Treves et al.,
2011), such as in those identified by PRMs. Developing effective PRMs
(on a prey-species basis), therefore, has the potential to greatly reduce
these human-wildlife conflicts.

Final remarks

In conclusion, it is clear that collecting detailed data on conflicts be-
tween wolves and humans is fundamental to determine the risk fac-
tors predisposing farms to wolf depredation to enable more effective
defence against wolf attacks (Kaartinen et al., 2009). Mitigating hu-
man–carnivore conflict requires identifying the landscape features that
reduce livestock accessibility and risk of death (Miller, 2015). While
a more standardized data collection (e.g. collecting information re-
lated to husbandry practices) could have improved our predictions, our
results showed that P- and S-PRM models, in addition to predicting
and mapping hotspots of livestock depredation, can offer further im-
portant information on how predation risk changes in relation to a spe-
cific livestock species (i.e. cattle, goats, sheep) and to the predictor
variables considered. Thus, we believe that our approach could be ap-
plied worldwide on different predator-prey systems and landscapes to
promote human-carnivore coexistence.
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